### Introduction to Quantum Mechanics and Quantum Computing

Introducing to main concepts in quantum mechanics and quantum computing

Introducing to main concepts in quantum mechanics and quantum computing

**Objective**: presenting advanced machine learning techniques, with a focus on Bayesian methods.

This course will be available from the Academic Year 2022/23.

**Objective**: introducing students to modern architectures for high performance computing. Students will learn how to properly test such architectures (computing power, bandwidth, latency, energy efficiency). Leveraging these skills, students will be introduced to the parallel programming based on MPI protocols (Message Passing Interface) and multi-threading with OpenMP.

**Objective**: providing numerical analysis tools for scientific computing, with particular attention to linear algebra, polynomial approximation, numerical integration, numerical solution of ordinary differential equations and partial differential equations, approximation of eigenvalues and eigenvectors.

**Objective**: presenting the basic elements and principles of inferential statistics and statistical techniques for the analysis of complex data.

**Objective**: introducing concepts and techniques for collaborative development of large and complex software systems for industrial applications, including Java, software development lifecycle, best practices in software development as code testing, versioning, and design patterns.

**Objective**: providing advanced knowledge of both theoretical and practical programming in C / C ++ and Python, with particular regard to the principles of object oriented programming and best practices of software development (advanced use of version control systems, continuous integration, unit testing), and introducing the modern technology of algorithms development.

**Objective**: introducing students to the fundamentals and practice of stochastic modeling, simulation of stochastic models and inference of parameters starting from observations, with a focus on scalability for large models.

**Objective**: introducing techniques of analysis and statistical Bayesian inference.

**Objective:** Introduce the students to the machine learning fundamentals, to the main techniques on supervised learning, and to the principal application domains. Present evolutionary calculation. The course explains how to design, develop and evaluate simple ML-based end-to-end systems and, at the same time, how to describe their operations.

**Objective:** introduce the student to the principles of learning from data based on statistics, and to the scientific treatment of data to obtain new and reproducible knowledge. Some of the main supervised and unsupervised statistical learning techniques are presented.

The course introduces the main concepts in information theory and algorithmic information theory.