Skip to content Skip to navigation

Data Processing and Visualization

Numerical Analysis

Objective: providing numerical analysis tools for scientific computing, with particular attention to linear algebra, polynomial approximation, numerical integration, numerical solution of ordinary differential equations and partial differential equations, approximation of eigenvalues and eigenvectors.

Data Management for Big Data

Objective: introducing students to computational management of data, in particular the characterization of an information system, data modeling, design and management of databases, including non-traditional ones (eg, unstructured documents, spatial data, biological data , multimedia data), to the fundamentals of distributed data and to methodologies and techniques for the management and analysis of big data.

Network Science

Objective: You will learn how to organize, transform, analyse and visualize data, with a focus on the relational data model, and a detour to semistructured data. You will learn the fundamentals of data science using R environment.

Introduction to Machine Learning

Objective: Introduce the students to the machine learning fundamentals, to the main techniques on supervised learning, and to the principal application domains. Present evolutionary calculation. The course explains how to design, develop and evaluate simple ML-based end-to-end systems and, at the same time, how to describe their operations.